

Webinar: Gain control of Scope 3: building resilient low-carbon crop supply chains.

December 2nd | 15:00-16:00 CET | Webinar



## **Get in touch!**



**Levi Bin**Conceptmanager |
Agronomist at Agrifirm

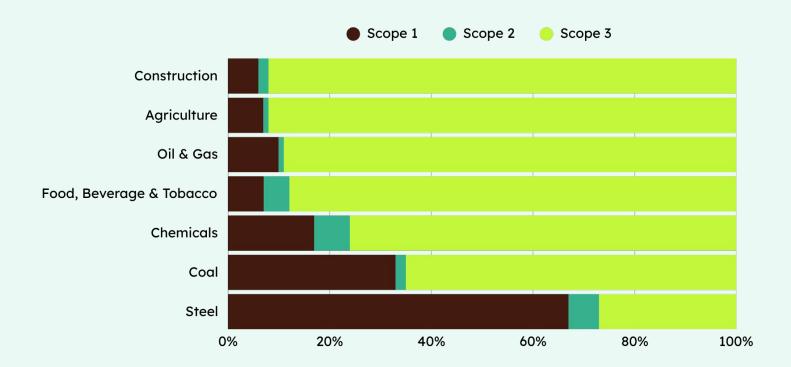
I.bin@cebecoagro.nl



**Rutger Beens**Co-Founder at Proba

rutger@proba.earth



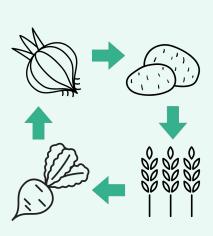



## What is Scope 3?

Scope 3 emissions are the indirect greenhouse gas emissions that occur across a company's entire value chain, both upstream and downstream, from activities the company doesn't directly control.



## Why is scope 3 relevant?






## Arable farming in the Netherlands

2025

| Crop        | Cultivated area<br>(ha) | Yield per ha<br>(tons) | Total yield<br>(tons) |
|-------------|-------------------------|------------------------|-----------------------|
| Wheat       | 112.380                 | 10,2                   | 1.146.553             |
| Barley      | 25.186                  | 7,9                    | 279.107               |
| Potato      | 164.418                 | 48                     | 7.900.233             |
| Sugar beets | 80.013                  | 90                     | 7.201.197             |
| Onions      | 33.183                  | 52,1                   | 1.727.259             |



Source: CBS



## Agrifirm is a farmer's cooperative - we make impact

#### **Agrifirm**

## Plant-Based Solutions (PBS)

- ±120 farm advisors
- Crop advice
- Buying and selling of wheat and barley
- Focus on innovations
- Software platform

#### **Impact**

#### Scope

- the Netherlands
- ±8000 farmers
- PBS = arable, fruits, full field vegetables, fodder and flower bulbs

#### Yield

#### **Adding value**

- Knowledge partner
- Crop cultivation plan
- Our innovations solve real issues:
- Balansbemesting: Improving nitrogen use efficiency
- Total Blight
   Approach Reducing environmental impact

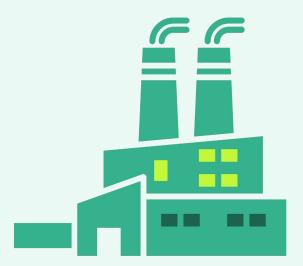
#### Sustainability

## "Turning KPI's into action"

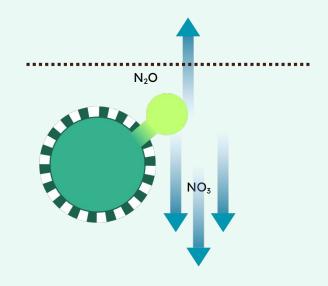
- Regenerative approach:
  - Climate
  - Biodiversity
  - Water quality
  - Soil Health
- Carbon footprint reduction: partner with Proba
- Alignment with SBTI and SAI



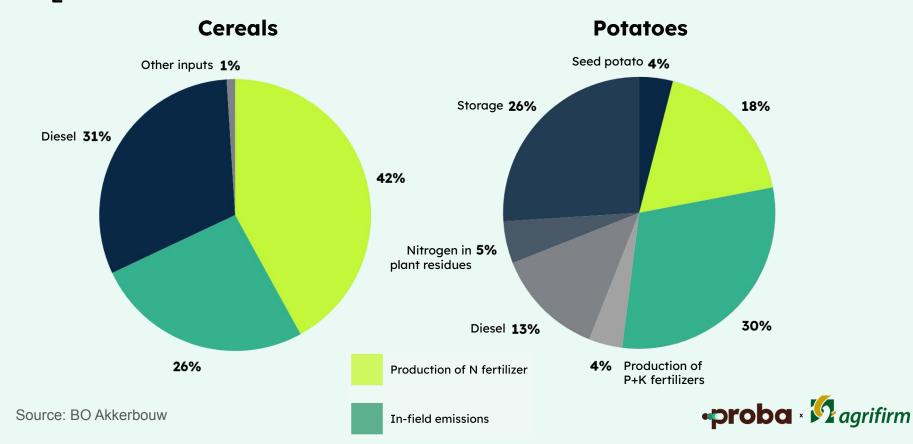



## GHG emissions from arable agriculture






## Carbon footprint of nitrogen fertilizers


Production of nitrogen fertilizers



In-field emissions from nitrogen fertilizers



## CO<sub>2</sub> footprint of crops – fertilizers have a big impact





# Mitigation strategies: Improving Nutrient Use Efficiency

## 4R nutrient stewardship



**Right source** 

Matches fertilizer type to crop needs



Right time

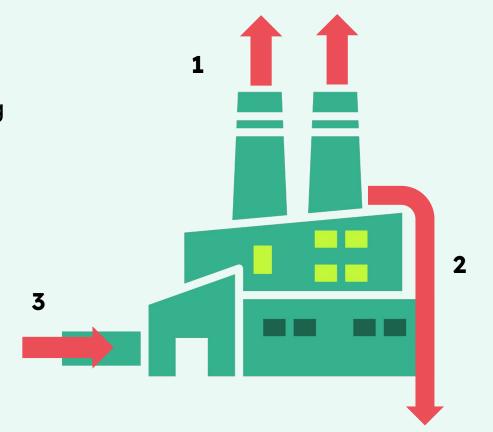
Matches fertilizer amount to crop needs



**Right rate** 

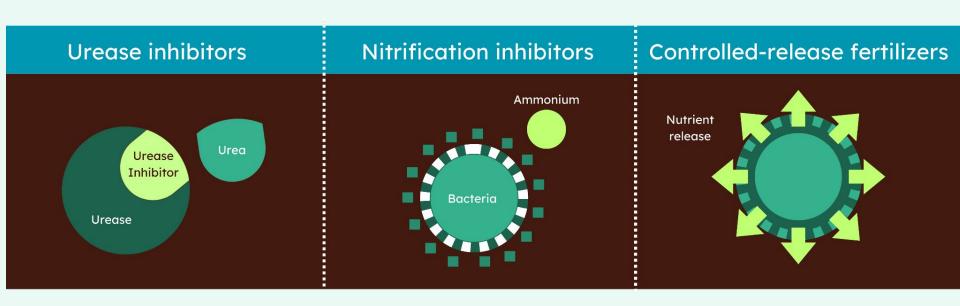
Makes nutrients available when crops need them




Right place

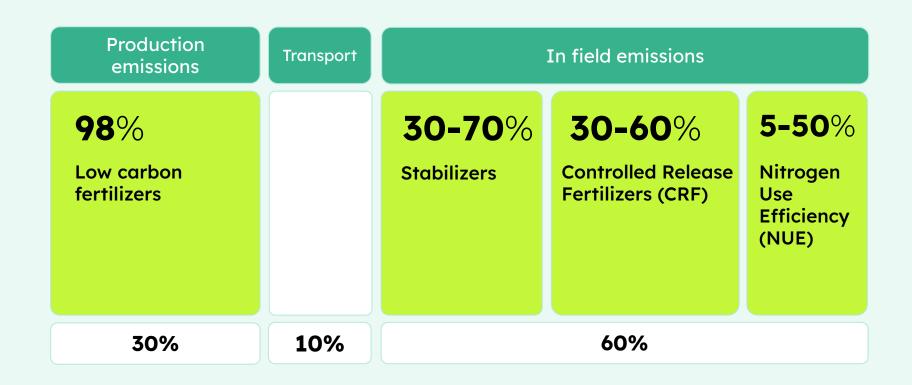
Keep nutrients where crops can use them



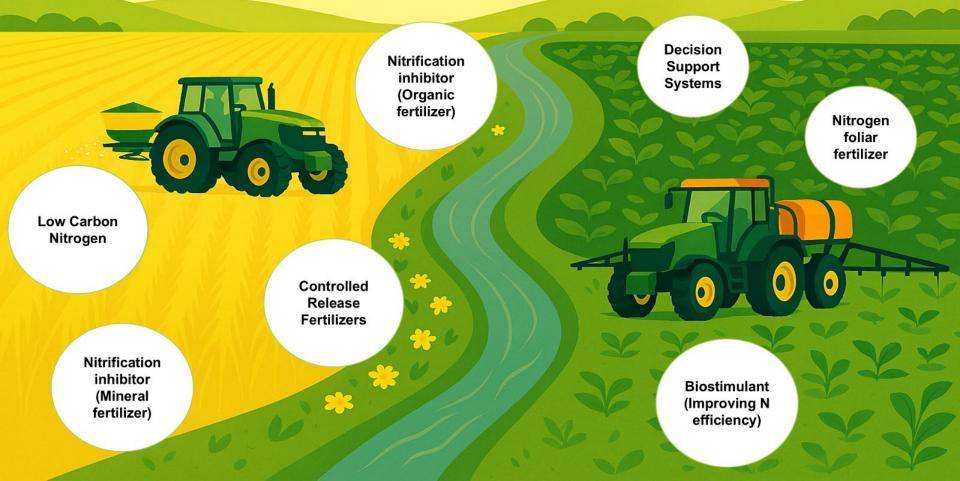

## Mitigation strategies: Reducing fertilizer PCF

- Reducing N<sub>2</sub>O emissions during production
- Capture and long term storage of CO<sub>2</sub>
- Replacing fossil natural gas inputs with biomethane or green electricity






## Mitigation strategies: Reducing in-field emissions






### Interventions to reduce



## What do mitigation strategies look like on the field





- No abrupt changes to their current practices
- Interventions that are risk-free for them - no yield loss
- Proven interventions
- Not too much hassle around audits
- Financial motivation to implement changes





## What do food companies want?

- Supply security
- Scalable and cost efficient projects
- Assurance
- No negative effect on crop yield and quality
- Co-benefits, e.g. Regenerative practices (SAI)
- SBTi compliance



# How do we bridge the gap between farmer and food company?

- 1) Research and selection -> proven interventions per crop / soil type
- 2) Onboarding farmers
- 3) From intervention to cultivation / fertilization plan
- 4) Follow-up during season with evaluation after harvest
- 5) Data exchange with Proba
- 6) Validation and Verification





## **Project results**



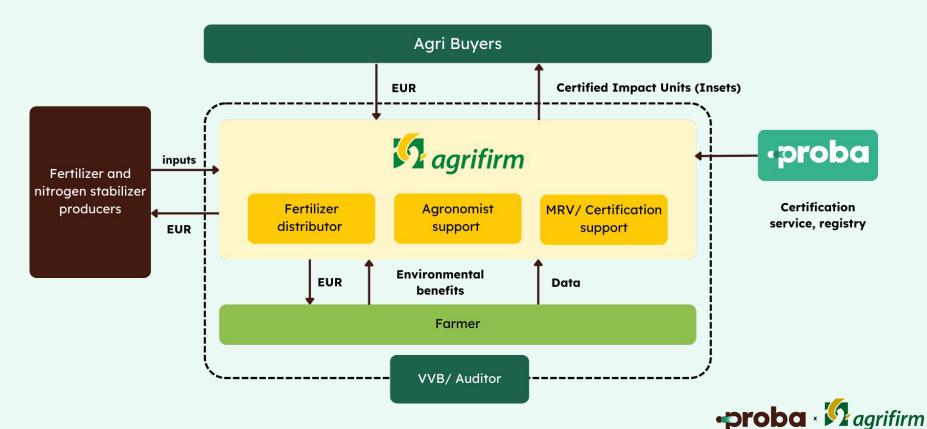


### Proba's role



Feasibility and scenario modeling




Quantification



Certification

- Issuing Impact Units to
- Transfer of units to food companies
- Claiming for scope 3 reporting

## Different project stakeholders



## Low carbon crops project



Target: lower crop footprint by reducing fertilizer related emissions



## Identifying the interventions

| Intervention                                                             | Rate impact  | Production | In-field | Methodology |
|--------------------------------------------------------------------------|--------------|------------|----------|-------------|
| Switch to low-carbon N stabilized (SDCD) CAN24S from conventional CAN24S | Not affected | X          | X        | PM.0004     |
| Switch to low-carbon CAN27 from conventional CAN27                       | Not affected | Χ          |          | PM.0002     |
| Use of N stabilizer (DMPP) with slurry                                   | Not affected |            | Χ        | PM.0004     |
| Switch to foliar application from CAN27                                  | Decreased    | Χ          | Х        | PM.0002     |
| Switch to CRF and CAN27 from CAN27 and NK                                | Decreased    | X          | Χ        | PM.0005     |
| Switch to low-carbon fuel (HVO100) from higher emission fuel (B7)        | Not affected | Χ          |          | CDM         |
| Decrease fuel usage due to less tractor fertilization rounds             | Decreased    | Χ          |          | PM.0005     |



## Example scenario for winter wheat

#### **Baseline**

| Fertilizers                 | N rate (kg N / ha) | Emissions<br>[kg CO2e / ha] |
|-----------------------------|--------------------|-----------------------------|
| CAN27 (conventional)        | 131,0              | 661                         |
| CAN24 + S<br>(conventional) | 114,0              | 928                         |
| Toto                        | al 245,0           | 1.588                       |


Total fertilizer emissions:

- 1.588 kg CO<sub>2</sub>e / ha
   185 kg CO<sub>2</sub>e / ton of wheat

| Intervention                               | Rate impact | Production | In-field |
|--------------------------------------------|-------------|------------|----------|
| CAN27 → Low carbon CAN27 + Foliar nitrogen | -12%        | -65%       | -27%     |
| CAN24-S → Low-carbon CAN24-S + NIs         | -           | -66%       | -70%     |



## Results for winter wheat: 49% CO<sub>2</sub>e reduction



#### Total fertilizer emissions:

- 812 kg CO<sub>2</sub>e / ha
- 94 kg CO<sub>2</sub>e / ton of wheat

#### **Emission reductions:**

- 777 kg CO<sub>2</sub>e / ha
  - o In-field: 211 kg
  - Fertilizer PCF: 297 kg
- 90 kg CO<sub>2</sub>e / ton of wheat
- 49%



## Example scenario for barley

#### **Baseline**

Fertilizers

N rate (kg N / ha)

[kg CO2e / ha]

Cattle slurry

130,0

465

Total

130,0



- 465 kg CO<sub>2</sub>e / ha
- 77 kg CO<sub>2</sub>e / ton of barley

| Intervention                       | Rate impact | Production | In-field |
|------------------------------------|-------------|------------|----------|
| Slurry → <mark>Slurry + NIs</mark> | -8%         | +∞%        | -41%     |



## Results for barley: 40% CO<sub>2</sub>e reduction



| Fertilizers         | N rate (kg N / ha) | Emissions<br>[kg CO2e / ha] |
|---------------------|--------------------|-----------------------------|
| Cattle slurry + NIs | 120,0              | 280                         |
| Total               | 120,0              | 280                         |

#### Total fertilizer emissions:

- 280 kg CO<sub>2</sub>e / ha
- 47 kg CO<sub>2</sub>e / ton of barley

#### **Emission reductions:**

- 185 kg CO<sub>2</sub>e / ha
  - o In-field: 190 kg
  - o Fertilizer PCF: -4 kg
- 31 kg CO<sub>2</sub>e / ton of wheat
- 40%



## Example scenario for potatoes



### **Baseline**

| Fertilizers          | N rate (kg N / ha) | Emissions<br>[kg CO2e / ha] |
|----------------------|--------------------|-----------------------------|
| CAN27 (conventional) | 174,0              | 1.468                       |
| Cattle slurry        | 166,7*             | 1.071                       |
| Total                | 340,7              | 2.539                       |

#### **Total emissions:**

- 2.539 kg CO<sub>2</sub>e / ha
- 56 kg CO,e / ton of potato

| Intervention | Rate impact | Production | In-field |
|--------------|-------------|------------|----------|
| CAN27 → CRF  | -9%         | -21%*      | -28%     |



## Results for potatoes: 14% CO<sub>2</sub>e reduction



| Fertilizers   |       | N rate (kg N / ha) | Emissions<br>[kg CO2e / ha] |
|---------------|-------|--------------------|-----------------------------|
| CRF blend     |       | 145,0              | 1.101                       |
| Cattle slurry |       | 166,7              | 1.071                       |
|               | Total | 311,7              | 2.172                       |

#### Total emissions:

- 2.172 kg CO<sub>2</sub>e / ha
- 48 kg CO<sub>2</sub>e / ton of potato

#### **Emission reductions:**

- 367 kg CO<sub>2</sub>e / ha
  - o In-field: 296 kg
  - o Fertilizer PCF: 130 kg
- 8 kg CO<sub>2</sub>e / ton of potato
- 14%



## **Initial results**

- (Harvest) data for the 2025 pilot is currently flowing in
- Approx 1.000 tCO<sub>2</sub>e reduced (fertilizer emissions only)
- 10-65% reduction of fertilizer related emissions for potatoes, barley and winter wheat



## **Get in touch!**



**Levi Bin**Conceptmanager |
Agronomist at Agrifirm

<u>l.bin@cebecoagro.nl</u>



**Rutger Beens**Co-Founder at Proba

rutger@proba.earth





Webinar: Gain control of Scope 3: building resilient low-carbon crop supply chains.

December 2nd | 15:00-16:00 CET | Webinar

